20,540 research outputs found

    Operator for Describing Polarization States of a Photon

    Full text link
    Based on the quantized electromagnetic field described by the Riemann-Silberstein complex vector FF, we construct the eigenvector set of F% F, which makes up an orthonormal and complete representation. In terms of % F we then introduce a new operator which can describe the relative ratio of the left-handed and right-handed polarization states of a polarized photon .In FsF^{\prime}s eigenvector basis the operator manifestly exhibits a behaviour which is similar to a phase difference between two orientations of polarization of a light beam in classical optics.Comment: This version (5 pages) will be published in the European Physical Journal

    Morphology, structure, optical, and electrical properties of AgSbO₃

    Get PDF
    The morphology of defect pyrochlore-type, AgSbO₃ microparticle/nanoparticles obtained via solid state reaction evolve from irregular to Fullerene-like polyhedra before finally decomposing into metal-organic framework-5 like particles with increase in sintering temperature. The defect pyrochlore-type AgSbO₃ particles are slightly Ag deficient while the valence of the antimony ion is shown to be +5 giving rise to a probable stoichiometry of Ag₁ˍₓ SbVO₃ˍₓ/₂, with x∼0.01–0.04. A highly structured diffuse intensity distribution observed via electron diffraction is interpreted in terms of correlated displacements of one-dimensional (1D) silver ion chains along ⟨110⟩ directions. A redshifting in the absorption edges in UV-visible absorption spectra is observed for samples prepared at sintering temperatures higher than 1000 °C and attributed to the surface plasma resonance effect associated with small amounts of excess metallic Ag on the Ag₁ˍₓ SbVO₃ˍₓ/₂ particles. An electrical properties investigation of the silver antimonate samples via dielectric, conductivity, and electric modulus spectroscopy shows a prominent dielectric relaxation associated with grain boundaries. The silver ion conductivity is associated with correlated displacements of 1D silver ion chains along ⟨110⟩ directions.Z.G.Y., Y.L., and R.L.W. acknowledge financial support from the Australian Research Council ARC in the form of ARC Discovery Grants

    Fermions in gravity and gauge backgrounds on a brane world

    Full text link
    We solve the fermionic zero modes in gravity and gauge backgrounds on a brane involving a warped geometry, and study the localization of spin 1/2 fermionic field on the brane world. The result is that there exist massless spin 1/2 fermions which can be localized on the bulk with the exponentially decreasing warp factor if including U(1) gauge background. Two special cases of gauge backgrounds on the extra dimensional manifold are discussed.Comment: 11 pages, no figures, final versio

    Localization of fermionic fields on braneworlds with bulk tachyon matter

    Full text link
    Recently, Pal and Skar in [arXiv:hep-th/0701266] proposed a mechanism to arise the warped braneworld models from bulk tachyon matter, which are endowed with a thin brane and a thick brane. In this framework, we investigate localization of fermionic fields on these branes. As in the 1/2 spin case, the field can be localized on both the thin and thick branes with inclusion of scalar background. In the 3/2 spin extension, the general supergravity action coupled to chiral supermultiplets is considered to produce the localization on both the branes as a result.Comment: 9 pages, no figure

    Modeling and Analysis of D2D Millimeter-Wave Networks With Poisson Cluster Processes

    Get PDF
    This paper investigates the performance of millimeter wave (mmWave) communications in clustered device-to-device (D2D) networks. The locations of D2D transceivers are modeled as a Poisson Cluster Process (PCP). In each cluster, devices are equipped with multiple antennas, and the active D2D transmitter (D2D-Tx) utilizes mmWave to serve one of the proximate D2D receivers (D2D-Rxs). Specifically, we introduce three user association strategies: 1) Uniformly distributed D2D-Tx model; 2) Nearest D2D-Tx model; 3) Closest line-of-site (LOS) D2D-Tx model. To characterize the performance of the considered scenarios, we derive new analytical expressions for the coverage probability and area spectral efficiency (ASE). Additionally, in order to efficiently illustrating the general trends of our system, a closed-form lower bound for the special case interfered by intra-cluster LOS links is derived. We provide Monte Carlo simulations to corroborate the theoretical results and show that: 1) The coverage probability is mainly affected by the intra-cluster interference with LOS links; 2) There exists an optimum number of simultaneously active D2D-Txs in each cluster for maximizing ASE; and 3) Closest LOS model outperforms the other two scenarios but at the cost of extra system overhead.Comment: This paper has been published in IEEE Transactions on Communications. Please cite the formal version of this pape

    Detecting Extra Dimension by Helium-like Ions

    Full text link
    Considering that gravitational force might deviate from Newton's inverse-square law and become much stronger in small scale, we present a method to detect the possible existence of extra dimensions in the ADD model. By making use of an effective variational wave function, we obtain the nonrelativistic ground energy of a helium atom and its isoelectronic sequence. Based on these results, we calculate gravity correction of the ADD model. Our calculation may provide a rough estimation about the magnitude of the corresponding frequencies which could be measured in later experiments.Comment: 8 pages, no figures, accepted by Mod. Phys. Lett.

    Fermions on Thick Branes in the Background of Sine-Gordon Kinks

    Full text link
    A class of thick branes in the background of sine-Gordon kinks with a scalar potential V(ϕ)=p(1+cos2ϕq)V(\phi)=p(1+\cos\frac{2\phi}{q}) was constructed by R. Koley and S. Kar [Classical Quantum Gravity \textbf{22}, 753 (2005)]. In this paper, in the background of the warped geometry, we investigate the issue of localization of spin half fermions on these branes in the presence of two types of scalar-fermion couplings: ηΨˉϕΨ\eta\bar{\Psi}\phi\Psi and ηΨˉsinϕΨ\eta\bar{\Psi}\sin\phi \Psi. By presenting the mass-independent potentials in the corresponding Schr\"{o}dinger equations, we obtain the lowest Kaluza--Klein (KK) modes and a continuous gapless spectrum of KK states with m2>0m^2>0 for both types of couplings. For the Yukawa coupling ηΨˉϕΨ\eta\bar{\Psi}\phi\Psi, the effective potential of the right chiral fermions for positive qq and η\eta is always positive, hence only the effective potential of the left chiral fermions could trap the corresponding zero mode. This is a well-known conclusion which had been discussed extensively in the literature. However, for the coupling ηΨˉsinϕΨ\eta\bar{\Psi}\sin\phi \Psi, the effective potential of the right chiral fermions for positive qq and η\eta is no longer always positive. Although the value of the potential at the location of the brane is still positive, it has a series of wells and barriers on each side, which ensures that the right chiral fermion zero mode could be trapped. Thus we may draw the remarkable conclusion: for positive η\eta and qq, the potentials of both the left and right chiral fermions could trap the corresponding zero modes under certain restrictions.Comment: 22 pages, 21 figures, published version to appear in Phys. Rev.

    A Reliable Reinforcement Learning for Resource Allocation in Uplink NOMA-URLLC Networks

    Get PDF
    In this paper, we propose a deep state-action-reward-state-action (SARSA) λ learning approach for optimising the uplink resource allocation in non-orthogonal multiple access (NOMA) aided ultra-reliable low-latency communication (URLLC). To reduce the mean decoding error probability in time-varying network environments, this work designs a reliable learning algorithm for providing a long-term resource allocation, where the reward feedback is based on the instantaneous network performance. With the aid of the proposed algorithm, this paper addresses three main challenges of the reliable resource sharing in NOMA-URLLC networks: 1) user clustering; 2) Instantaneous feedback system; and 3) Optimal resource allocation. All of these designs interact with the considered communication environment. Lastly, we compare the performance of the proposed algorithm with conventional Q-learning and SARSA Q-learning algorithms. The simulation outcomes show that: 1) Compared with the traditional Q learning algorithms, the proposed solution is able to converges within 200 episodes for providing as low as 10-2 long-term mean error; 2) NOMA assisted URLLC outperforms traditional OMA systems in terms of decoding error probabilities; and 3) The proposed feedback system is efficient for the long-term learning process
    corecore